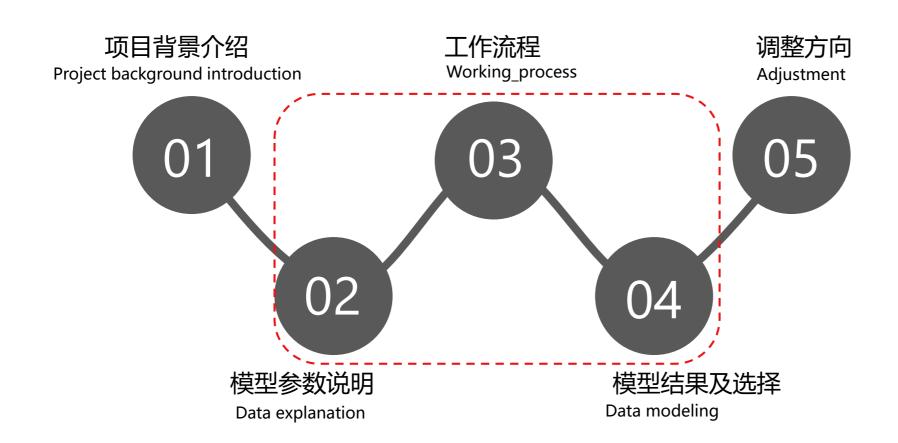
防盗刷及客群画像

防盗刷尝试性建模

商业研究部



工作內容概述及范例展示

01.项目背景介绍

分析目的

● 深入了解盗刷用户画像及行为偏好(客户画像,聚类模型)

评分,速度,解释性

- 挖掘出盗刷的关键因素(关键节点挖掘)
- 通过算法预测用户是否盗刷(预测模型)
- 增加盗刷成本进而减少盗刷情况(风控策略)

商业价值

- 通过监测盗刷行为,对盗刷玩家进行画像测评,提前监控潜在盗刷玩家
- 减少盗刷成功现象,降低对营收负贡献概率
- 实时监测玩家行为,对潜在盗刷玩家进行及时预警

数据说明

● 此次数据是08项目组所有数据,因不可控因素导致数据质量较差,故测试模型采用拟合填充数据会导致此次模型存在过拟合状态

01.特征字段介绍

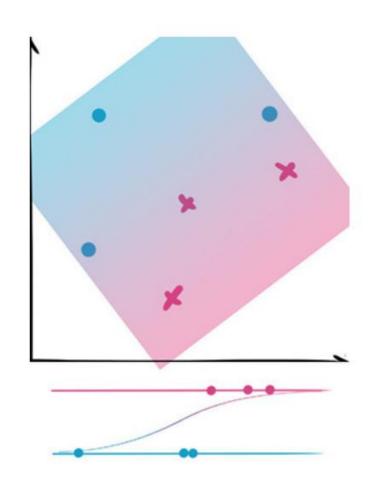
共 175154 行 X 25 列数据 (含标签列)

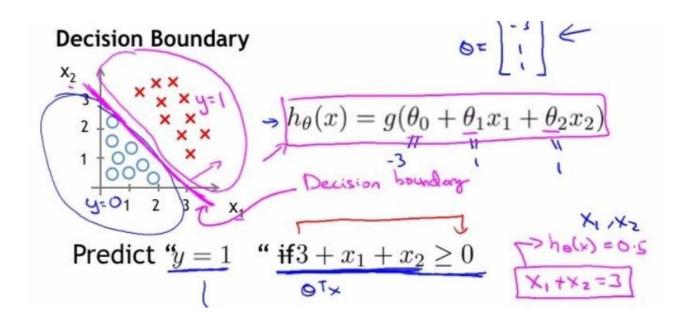
用户储值行为

用户游戏

栏位	定义	栏位	定义	栏位	定义	栏位	定义
	玩家编号	У₽Y □ 90/4	玩家首储时间	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	玩家第一个玩 的游戏♥♥		首次转账前点数
		OM		<u>₩</u>		☞₩□•♦४♦	首次转账点数
MO IM So ♦ M •	账号创建时 间	©\\\ \□\\\ \□	账号创建时间	SOM K SOM K	玩家第一个玩 的游戏分类	☐☺■◆↗♏☐ ☐□∺■◆	
MOH				%; ₩ <u>□</u> <u>0</u> \	W G	☞₩□•♦४♦	首次转账时间
ϑ♏◻Ӿ	玩家验证手	O®XX	玩家一天内最)(요			
≯ ⊠∀♦	机号时间	◆• M,□∀	多储值次数	0M 7 □ □ M 7 7 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	玩家第一次转 账前游戏个数	♦ HOM	
$\mathcal{M}^{\mathbf{C}}$							首次转账时等级
⊙ □□□	玩家活跃值						
©\+©		$\overline{\sigma}$	绑定手机后 □ 圖天内储值 次数 绑定手机后 □ 圖天内玩家	0 11 2 7	エー トラ たケー ハレ ナナ	·	
•				H=BKM OMK& OMK& VMXD□	玩家第一次转 帐前游戏分类 个数		首次转账账号是否
□MS MXX◆X OM	到达转账条 件所需时间	-					为币商
		■®図VO □®図VO				>□□M >> M □□ M >	首次转账后有无游 戏行为
W. A P	旦不次即玩	□■ጢ፟፟፟፟፟□	累计储值金额	- •		□)(■	

03.说明





拟合的不是线性函数,拟合的是一个概率学中的函数,即对是否为盗刷玩家进行分类,将输出标签赋予对应UID,输出预测结果

03.工程处理流程

特征筛选

数据处理

建模

04.模型结果展示

逻辑回归

准确率: 0.96

AUC: 0.499

最优得分: 0.9644874899112187 测试得分: 0.9605263157894737 全部及最优系数: LogisticRegression(C=0.3) 定义搜索的最优系数: {'C': 0.3, 'solver': '1bfgs'} 朴素贝叶斯

准确率: 0.647

AUC: 0.587

参数:

priors=None

决策树

准确率: 0.378

参数C: 0.478

6 1/20)(■)(**7**

• • •

OX■X + 500□ • M + X

◆□●★□●

OH■X•©○□•M•X

随机森林

准确率: 0.960

参数C: 0.407

6 1/20 **/(■) /(●**

OH■X+550□●M+

∀•□•**∀**♦**□**•

OH■X+550□•M.+

Remited The British of the British o

XGBoost

准确率: 0.960

AUC: 0.407

 $\square \Omega er \mathbb{M} \mathbb{M} \bullet \mathcal{H} \bullet \mathbb{M} \blacksquare$

6∂}**#**■♥□□□□¬₀

)(• ♦)(M) **②**

■>M•♦+○50♦□□•

·◆A·SO□•M A□€

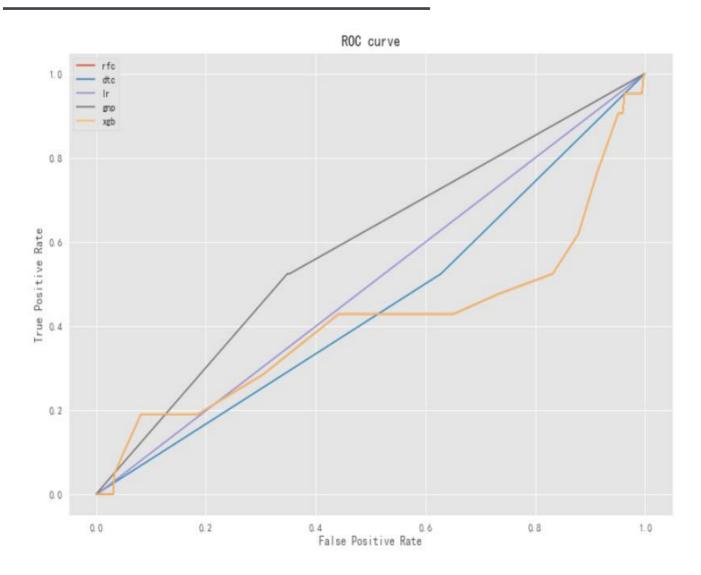
04.逻辑回归结果可视化

	precision	recall f1-score support			
非盗, 盗,		1.00 0.00	0. 98 0. 00	511 21	
accuracy macro avg weighted avg	0. 4 8 0. 92	0.50 0.96	0.96 0.49 0.94	532 532 532	
[[511 0] [21 0]]					

score 0.451278 0.949 1.0 0.05 0.095			auc	accuracy	precision	recall	f1
	⊗	score	0.451278	0.949	1.0	0.05	0.095

说明:模型因数据填充存在过拟合状态,不具备落地价值,数据仅供分享交流使用

04.ROC曲线模型比较



使用归一化数据的模型:

- 逻辑回归 (lr)
- 朴素贝叶斯 (gnb)

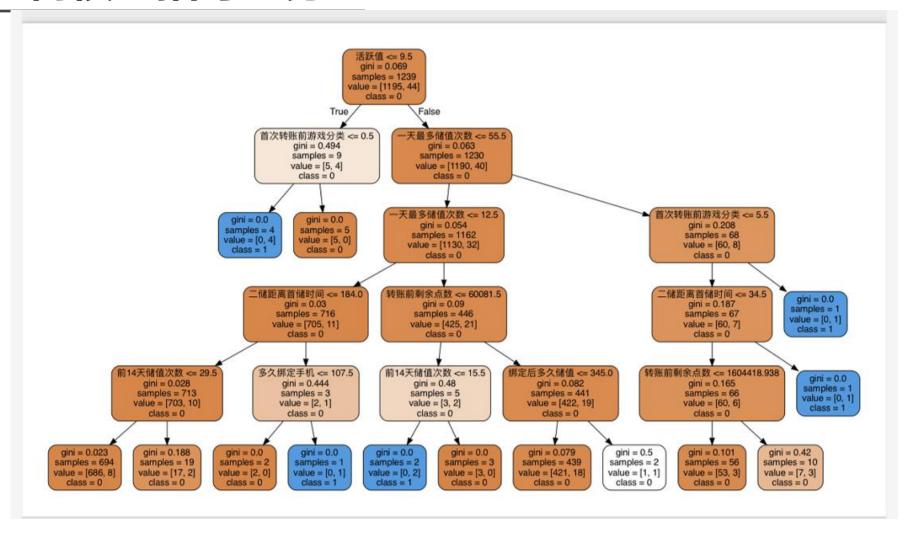
使用未归一化数据的模型:

- 决策树 (dtc)
- 随机森林 (rfc)
- XGBoost (xgb)

通过比较发现

Lr, 随机森林和XGBoost的效果更 好

04.树模型指导业务



规划及框架搭建

后续方向:

盗刷玩家用户画像

--待分析,对特征字段再进行深入探索研究

数据质量准备

--已接入数仓,对数据进行存储准备后续建模

用户信用评分体系

--衡量玩家未来一段时间内盗刷概率的预测

